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The non-Newtonian rheology is calculated numerically to second order in the volume
fraction in steady simple shear flows for Brownian hard spheres in the presence of
hydrodynamic and excluded volume interactions. Previous analytical and numerical
results for the low-shear structure and rheology are confirmed, demonstrating that
the viscosity shear thins proportional to Pe2, where Pe is the dimensionless shear rate
or Péclet number, owing to the decreasing contribution of Brownian forces to the
viscosity. In the large Pe limit, remnants of Brownian diffusion balance convection
in a boundary-layer in the compressive region of the flow. In consequence, the
viscosity shear thickens when this boundary-layer coincides with the near-contact
lubrication regime of the hydrodynamic interaction. Wakes are formed at large Pe
in the extensional zone downstream from the reference particle, leading to broken
symmetry in the pair correlation function. As a result of this asymmetry and that in
the boundary-layer, finite normal stress differences are obtained as well as positive
departures in the generalized osmotic pressure from its equilibrium value. The first
normal stress difference changes from positive to negative values as Pe is increased
when the hard-sphere limit is approached. This unusual effect is caused by the
hydrodynamic lubrication forces that maintain particles in close proximity well into
the extensional quadrant of the flow. The study demonstrates that many of the
non-Newtonian effects observed in concentrated suspensions by experiments and by
Stokesian dynamics simulations are present also in dilute suspensions.

1. Introduction
The rheology of colloidal suspensions, consisting of submicrometre size particles

dispersed in a Newtonian fluid, is an active field of research. This activity stems from
the wide variety of colloidal systems and the many settings in which fluid flow plays
a key role. Our understanding of the rheological behaviour of colloidal suspensions
has benefited from access to exact results on model systems, such as those on dilute
suspensions of particles with well-defined interactions in weak flows. As these weak-
flow theories for concentrated systems are continually being improved (Brady 1996;
Lionberger & Russel 2000), it is important to focus attention on the effect of stronger
flows. By strong flows we mean flows in which the non-dimensional shear rate or
Péclet number (Pe) is large.

Because of a number of developments, the effect on the bulk rheology of particle
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concentration and pairwise interactions at small Pe numbers is now well understood
for spherical, Brownian particles. Batchelor’s (Batchelor & Green 1972; Batchelor
1977) treatment of the dilute limit and extensions thereof, experiments on model
suspensions (van der Werff et al. 1989a; Segre et al. 1995; Watanabe et al. 1999),
and the integration of hydrodynamic interactions in today’s computer simulations
have been particularly important in this respect. Considerably less is known, however,
about the effect of strong flows on the rheological properties of colloidal systems.
This is illustrated by the on-going search for the origin of shear thickening or shear
dilatancy (Hoffman 1998). This phenomenon has received attention because of the
severe restrictions it places on the processing of suspensions of solid particles.

As already mentioned, the theoretical treatment of dilute colloidal suspensions
has been a major contributing factor to the present-day understanding of colloid
rheology, including such non-Newtonian effects as shear thinning, and of normal
stresses. In this work, we will demonstrate that it serves as a similarly useful vehicle
for investigating the shear thickening phenomenon, as well as other non-Newtonian
effects caused by strong flows. Russel (1980) has discussed the range of validity of
the pair-interaction limit. In this context he notes that, although restricted to small
concentrations, the rheological behaviour in this limit mimics qualitatively many of
the features observed experimentally for concentrated systems. In this work, it will be
seen to hold also for the shear thickening phenomenon.

For monodisperse Brownian hard spheres subjected to steady shear flows, the
rheological properties depend on only two dimensionless parameters: the particle
volume fraction φ = 4

3
πna3 and the Péclet number Pe = 6πηsγ̇a

3/kT , defined in
terms of the radius a, number density n, solvent viscosity ηs, shear rate γ̇, and the
thermal energy kT . The Péclet number gauges the importance of convection relative
to Brownian motion. It sets the degree to which the spatial arrangement of particles –
referred to commonly as the microstructure – is distorted owing to the imposed flow
field. For small Péclet numbers, the system remains close to equilibrium because the
restoring effects of Brownian motion outweigh the effects of convection that force
the system out of equilibrium. This limit has been extensively analysed for dilute
suspensions, most notably by Batchelor (1977). More recently, Brady & Vicic (1995)
have shown that the deformation of the microstructure is formulated as a regular
perturbation expansion in the Péclet number up to second order; higher-order terms
have to be determined by matched asymptotic expansions. They demonstrate that
to second order in Pe, while the viscosity remains Newtonian, the onset of non-
Newtonian behaviour is manifest in normal stress differences. Lionberger (1998) has
confirmed this finding by a numerical analysis similar to the one we pursue here.
Asymptotic analyses of dilute systems have further produced predictions for the shear-
induced microstructures and resulting non-Newtonian rheology, including normal
stresses, of slender rods in weak flows (Berry & Russel 1987) and electrostatically
stabilized suspensions in weak and moderately strong flows (Russel 1978).

Similar progress towards a complete analysis of the high-Péclet-number limit has
not been made. Batchelor & Green (1972) demonstrated that in pure straining flows
the steady-state spatial arrangement of particles, contained in the pair-distribution
function, is spherically symmetrical, which leads to a Newtonian rheology. They
proceeded to show that in simple shear flows for Pe−1 = 0 the pair-distribution
function is indeterminate owing to regions of closed streamlines along which a pair
of particles orbit one another. To determine the viscosity for such non-Brownian
suspensions some additional effect must be introduced that can transport particles
across streamlines. For Brownian particle suspensions this problem is intrinsically
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circumvented as Brownian diffusion, even though it may be weak compared to
convection for large values of the Péclet number, effects this displacement of particles
across streamlines.

Brady & Morris (1997) identified analytically a boundary-layer near particle contact
where residual Brownian diffusion balances convection. This is a prominent feature of
the microstructure in strong shear flows seen in both computer simulations (Phung,
Brady & Bossis 1996; Foss & Brady 2000b) and experiments (Parsi & Gadala-
Maria 1987). Boundary-layer formation is also encountered at low Péclet number
in the related situation of high-frequency oscillatory shear flows, where diffusion
balances transient convection near particle contact (Lionberger & Russel 1994). For
pure straining flow, Brady & Morris showed that even though the pair-distribution
function is asymmetric within the boundary-layer, non-Newtonian effects vanish in the
limit Pe → ∞, consistent with the conclusion of Batchelor & Green. By introducing
extra excluded volume interactions, by which particles are kept at least a minimum
distance 2b > 2a apart, where a is the particle radius, Brady & Morris extracted
a finite second normal stress difference and an isotropic pressure. Hence, the non-
Newtonian rheology survives in the Pe → ∞ limit when particles are kept from
precise contact. This may appear to be in contradiction to the fact that the boundary-
layer thickness scales as aPe−1 (Brady & Morris 1997), but can be explained by
the stress being proportional to the product of the boundary-layer volume and the
probability density it encloses; this product is O(1) in the high-Pe limit as the pair-
distribution function scales linearly with Pe in the boundary-layer when b > a. Russel
(1978) reached a similar conclusion for electrostatically stabilized particles, when long-
range electrostatic forces between particles balance convection. The mutual repulsion
displaces particles across streamlines, which imparts a non-Newtonian behaviour to
the rheology. However, as the repulsion in this case is soft, the flow will inevitably
overwhelm the repulsive force for sufficiently large Pe, leaving a Newtonian rheology
in the Pe−1 → 0 limit.

Two-particle trajectory-based calculations by Zarraga & Leighton (2001) on non-
Brownian particle suspensions yield results in excellent accord with those of the
asymptotic analysis of Brady & Morris. The high-Pe asymptotes for the normal
stress differences and the osmotic pressure in shear flow without hydrodynamic
interactions agree with the predicted values. In particular, a finite, negative second
normal stress difference survives at high Pe, indicating that the rheology is non-
Newtonian, although the first normal stress difference is found to vanish. Additional
Pe−1 = 0 results for the normal stress differences for smaller b/a values are available
from the calculations of Wilson & Davis (2000).

In this work, numerical evaluations of the microstructure and rheology are reported
for dilute Brownian suspensions subjected to simple shear flow. The results cover
essentially the entire range of Péclet numbers, which permits a detailed analysis
of both the onset of non-Newtonian rheology near the weak flow limit and the
nature of the boundary-layer in the strong flow, high-Pe limit. The analysis is not
limited to, but includes also sheared hard-sphere suspensions in the presence and
absence of hydrodynamic interactions. The effect of additional repulsive interactions
is investigated in the same way as in Brady & Morris, by including a hard repulsion
at a distance 2b > 2a.

In what follows, the general framework used for the determination of the micro-
structure and rheology of colloidal suspensions is reviewed in § 2. It consists of
the formulation of a two-particle Smoluchowski equation which governs the non-
equilibrium pair-distribution function. The stress tensor is evaluated subsequently in
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§ 3 by ensemble averaging of the particle stresslets. Section 4 contains a description
of the numerical solution methods employed for solving the Smoluchowski equation.
In § 5, the weak-flow limit is treated in detail to demonstrate the accuracy of the
numerical solutions, as well as to focus on the onset of the non-Newtonian shear
rheology signalled by shear-thinning and finite normal stress differences. Emphasis
is also placed on the structure of the high-shear boundary layer, which plays a
dominant role in determining the rheology. Results are shown for several excluded
volume parameters b/a, which are useful in that they provide qualitative trends for
the shear rheology of suspensions containing particles interacting via short- and
longer-range repulsive interactions. However, as demonstrated by Russel (1978) for
realistic soft repulsions, particle pairs accumulate at characteristic distances that are
governed by the competition between the repulsion and convection. As a consequence,
an effective hard-sphere radius (b/a) will depend on the magnitude and range of the
repulsion as well as on the strength of the flow. This finding is indeed well established
by experiments (Mewis et al. 1989). Nevertheless, by limiting this study to hard-core
repulsions, we can provide results in terms of just two parameters, b/a and Pe. Thus
by varying b/a the interaction can be tuned, so that we can examine both the hydro-
dynamically dominated (b/a ∼ 1) regime and the regime dominated by Brownian
motion and interparticle forces (b/a→∞); the latter two we will collectively refer to
as thermodynamic forces. A noteworthy finding is that the level of shear thickening
can be controlled by the inclusion or exclusion of hydrodynamic interactions by
varying b/a.

2. Non-equilibrium microstructure
When N suspended particles in a volume V are subjected to a constant velocity

gradient Γ, the probability density for the particle coordinates PN(xN, t) satisfies the
Smoluchowski equation

∂PN

∂t
+ ∇ · jN = 0, (2.1)

with the 3N-dimensional particle flux vector given by

jN = UPN + R−1
FU · (F P − kT∇ lnPN)PN. (2.2)

In the above,U is the hydrodynamic velocity vector and F P = −∇VN is the direct force
vector which derives from an N-particle interaction potential VN . The hydrodynamic
mobility tensors R−1

FU relate the forces to the resulting velocities. At equilibrium
(U = 0) the probability distribution is independent of time and the net flux vanishes
jN = 0. The particle mobilities disappear from the governing equation (R−1

FU is
positive definite), leaving a balance between the conservative forces and gradients in
the probability distribution

F P = kT∇ lnP 0
N. (2.3)

This equation is solved by the Boltzmann distribution P 0
N = exp (−VN/kT )/ZN ,

where ZN is the configurational integral which guarantees that the probability density
is normalized.

Forcing the fluid to flow causes relative motion among particles. For a linear flow
the macroscopic velocity gradient 〈Γ〉 = 〈E 〉+〈Ω〉 is a superposition of pure straining
motion, characterized by the symmetric rate-of-strain tensor 〈E 〉, and pure rotation,
characterized by the anti-symmetric vorticity tensor 〈Ω〉. The particle velocities that
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result from the linear flow are given by

U = 〈Γ〉 · x+ R−1
FU · RFE : 〈E 〉. (2.4)

The first term arises simply from the advection of the particles by the flow. The second
term originates from the hydrodynamic interactions among particles. The additional
hydrodynamic resistance tensor RFE indicates that hydrodynamic forces are exerted
on the particles as a result of the imposed flow. In the absence of hydrodynamic
interactions RFE = 0 and the velocity vector is given simply by U = 〈Γ〉 · x.

This work focuses on steady shear flows for which the probability distribution
is independent of time, but deviates from the equilibrium Boltzmann distribution.
Moreover, the analysis will be restricted to the dilute limit where only pairs of par-
ticles need be considered. The motivation for this simplification is that principally
exact results can be obtained for the non-equilibrium pair-distribution function, even
for strong flows. Special attention will be given to the competition between thermo-
dynamic (effective Brownian and interparticle) forces and hydrodynamic forces. For
this reason, a convenient way of tuning the relative importance of thermodynamic
and hydrodynamic interactions is required. Such a device can be realized by intro-
ducing an excluded volume interaction, often referred to as an effective hard-sphere
interaction or an excluded annulus model, of the form

V (r) =

{ ∞ (r < 2b/a),
0 (r > 2b/a),

(2.5)

where r has been made dimensionless momentarily with the hard core radius a. We
shall later adopt b as the length scale in all subsequent normalizations. When b/a = 1,
the system consists of hard spheres interacting hydrodynamically with each other,
whereas on approaching the limit b/a→∞, the particles are kept apart such that they
no longer experience any hydrodynamic interaction; as a consequence, the special
case of sheared hard-sphere suspensions under neglect of hydrodynamic interactions
is recovered. The effective hard-sphere model is widely used in colloid science and in
the modelling of the rheology of suspensions (Russel 1984; Mewis et al. 1989; Russel,
Saville & Schowatter 1989). Far more recently, it has been adopted as a model of
surface roughness in non-colloidal suspensions (Wilson & Davis 2000). The influence
of other aspects of the interparticle interaction on the structure and rheology, such
as soft repulsions and attractive interactions, are left for future analyses.

The equation governing the pair-distribution function is obtained by integrating
the steady N-particle Smoluchowski equation over all the particle positions but
two and neglecting any three-body couplings. The result is the steady two-particle
Smoluchowski equation, given by

∇r · Dr · ∇rg(r) = Peb∇r · (U rg(r)), (2.6)

where all lengths have been made dimensionless with the excluded volume radius b,
and a relative coordinate system has been chosen with r = x2 − x1 and ∇r = ∂/∂r.
Moreover, the relative diffusivity Dr , here dimensionless on the isolated particle,
Stokes–Einstein diffusivity D0 = kT/6πηsa, is defined by Dr = D22 + D11 − D12 − D21.
The relative velocity U r = U 2−U 1 is non-dimensional on bγ̇, where γ̇ is the magnitude
of the velocity gradient and n2g(r) = ((N − 2)!)−1

∫
dx3 . . .dxNPN .

Note that because (2.6) applies in the region r = |r| > 2, ∇rV (r) = 0, and (2.6)
expresses a balance between Brownian motion (left-hand side of (2.6)) and convection
(right-hand side of (2.6)). On the one hand, convection by the imposed flow drives the
system from equilibrium, but on the other hand the external forcing must compete



244 J. Bergenholtz, J. F. Brady and M. Vicic

with Brownian motion which tends to restore equilibrium. The degree to which the
structure is perturbed away from equilibrium is determined by the dimensionless
Péclet number Peb = b2γ̇/D0, which appears naturally in (2.6). The Péclet number
can be viewed as a ratio of time scales: the diffusive time b2/D0 divided by the
convective time scale 1/γ̇; or, equally well, it can be viewed as a ratio of forces: the
convective force ζ0(bγ̇) = 6πηsabγ̇ divided by the effective Brownian force kT/b.

Following the convention of Batchelor (1977), the relative diffusivity and velocity
are expressed in terms of two-body, scalar hydrodynamic functions as

Dr = 2[G(r)r̂r̂ +H(r)(I − r̂r̂)], (2.7)

U r = 〈Γ̂〉 · r − r · 〈Ê 〉 · [A(r)r̂r̂ + B(r)(I − r̂r̂)], (2.8)

where 〈Γ̂〉 = γ̇−1〈Γ〉, 〈Ê 〉 = γ̇−1〈E 〉, r̂ = r/r, and I is the unit dyadic. The hydrodynamic
functions G(r) and H(r) describe the relative mobility parallel and transverse to the
line of centres of a pair of spheres, whereas A(r) and B(r) relate the relative velocity
parallel and transverse to the line of centres to the strain rate.

To completely specify the microstructure, (2.6) is supplemented with boundary
conditions. When r = 2, the radial component of the relative flux vanishes because
of (2.5), which is expressed as

r̂ · Dr · ∇rg(r) = Pebr̂ ·U rg(r), (2.9)

and at large separations

g(r)→ 1 as r →∞ (2.10)

guarantees a structure without long-range order.
Since the non-equilibrium pair-distribution function approaches unity at large dis-

tances, it is convenient to introduce the structural deformation function f(r) = g(r)−1.
Moreover, since the dilute-limit equilibrium solution for g(r) is unity everywhere for
r > 2, f(r) is the departure from the equilibrium microstructure resulting from the
imposed flow.

3. Bulk stress
At low Reynolds number, the bulk stress of a colloidal suspension can be written

as

〈Σ〉 = −〈p〉I + 2ηs〈E 〉+ 〈ΣP 〉, (3.1)

where 〈p〉 is the constant fluid pressure, which is indeterminate for an incompressible
solvent, and 2ηs〈E 〉 is the Newtonian solvent contribution to the deviatoric stress. In
addition to the solvent contributions, the colloidal particles generate both isotropic
and deviatoric stresses in the fluid by a number of mechanisms, all of which are col-
lected in the particle stress 〈ΣP 〉. This excess stress term is divided into kinetic, −nkT I ,
hydrodynamic, n〈SH〉, Brownian, n〈SB〉, and interparticle, n〈SP 〉, contributions as

〈ΣP 〉 = −nkT I + n(〈SH〉+ 〈SB〉+ 〈SP 〉), (3.2)

with

〈SH〉 = −〈RSU · R−1
FU · RFE − RSE〉 : 〈E 〉, (3.3)

〈SB〉 = −kT 〈∇ · (RSU · R−1
FU)〉, (3.4)

〈SP 〉 = −〈(xI + RSU · R−1
FU) · F P 〉, (3.5)
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where 〈. . .〉 denotes the ensemble average (N!)−1
∫

dxNPN . . . , which involves the
non-equilibrium probability density found from solving (2.1).

Integration of (3.3)–(3.5) over all but two particle positions and neglect of three-
body terms results in the following expressions, valid for b > a, for the three
contributions to the particle stress:

n〈SH〉 = 5φηsγ̇〈Ê 〉+ 5φ2ηsγ̇〈Ê 〉+
15

4π
φ2
b

(a
b

)3

ηsγ̇

∫
drg(r)

×
{
K(r)〈Ê 〉+ L(r)

(
r̂ · 〈Ê 〉r̂ + 〈Ê 〉 · r̂r̂ − 2

3
I
(
r̂ · 〈Ê 〉 · r̂

))
+ M(r)

(
r̂ · 〈Ê 〉 · r̂

) (
r̂r̂ − 1

3
I
)− 2

5
B(r)I

(
r̂r̂ − 1

3
I
)}
, (3.6)

n〈SB〉 = −3nkTφb
8π

∫
drg(r)W (r)

(
r̂r̂ − 1

3
I
)− nkTφb

6π

a

b
I

∫
drA(r)

∂g(r)

∂r
, (3.7)

n〈SP 〉 = −3nkTφb
π

(1− A(2))

∫
dΩg(2r̂)

(
r̂r̂ − 1

3
I
)− nkTφb

π
I

∫
dΩg(2r̂). (3.8)

Here, K(r), L(r), M(r), W (r), A(r) and B(r) are additional hydrodynamic functions
that result from the decomposition of the two-particle resistance tensors derived
from those in (3.3)–(3.5). From the solution of (2.6), the viscometric functions can
be calculated from the above stress expressions. For simple shear flow the velocity
gradient is defined as 〈Γ〉 = γ̇ẑx̂ with the flow in the ẑ-direction, the gradient in the x̂-
direction, and the vorticity axis directed along ŷ. The non-Newtonian flow behaviour
is characterized by the shear viscosity, η = Σxz/γ̇, and by the first and second normal
stress differences

N1 = Σzz − Σxx, (3.9)

N2 = Σxx − Σyy. (3.10)

Moreover, the flow distorts the equilibrium microstructure which affects the trace of
the particle stress. At equilibrium the trace of the particle stress is directly related to
the osmotic pressure (Brady 1993) as

Π0 = − 1
3
I : 〈ΣP 〉 = nkT (1 + 4φb), (3.11)

valid for (2.5). Here, φb = 4
3
πb3n is the volume fraction based on the excluded volume

radius b. Under flow the isotropic stress changes, and we extend the definition of the
osmotic pressure to finite Pe via Π(Pe) = − 1

3
I : 〈ΣP (Pe)〉. In this work we will refer

to this quantity as the shear-dependent osmotic pressure.
Because of the definition adopted in (3.7) for the Brownian stress, the equilibrium

osmotic pressure is determined by the interparticle contribution to the particle stress.
For a hard-sphere suspension with b ≡ a it is more appropriate to derive the osmotic
pressure mechanically. The equilibrium osmotic pressure then arises from the trace
of the Brownian particle stress only (Brady 1993). As discussed in Appendix A, the
term in the Brownian stress that determines the hard-sphere equilibrium osmotic
pressure does not appear in (3.7) because it vanishes when b > a and is replaced by
the last term in (3.8). This is a mere matter of definition, as defining the hard-sphere
osmotic pressure thermodynamically from the average of the virial, as done here, or
mechanically as done previously, yields the identical result because of the asymptotic
near-field properties of the hydrodynamic tensors (Jeffrey, Morris & Brady 1993;
Brady 1993).



246 J. Bergenholtz, J. F. Brady and M. Vicic

(a) (b)

(c) (d )

Figure 1. The non-equilibrium pair-distribution function f(r) = g(r)− 1 in the shear flow-gradient
plane as a function of Pe for hard spheres in the absence of hydrodynamic interactions. (a) Pe = 1,
(b) 5, (c) 10, (d ) 20.

4. Numerical solution
Obtaining the solution to (2.6) for all Péclet numbers is a challenging problem

because of the formation of a boundary-layer on the compressive axes and a wake
downstream on the extensional axes. The boundary-layer is a prominent feature
of the microstructure in strong shear flows observed in both computer simulations
(Phung et al. 1996; Foss & Brady 2000b) and experiments (Parsi & Gadala-Maria
1987). Figure 1 shows the microstructure in the plane of shear for hard spheres
under neglect of hydrodynamic interactions in a simple shear flow; the formation
of the boundary-layer is clearly evident and is accompanied by the growth of a
wake downstream from the reference particle at the origin. The transport of particles
from upstream locations is hindered by the impenetrability of the reference particle,
and thus as the Péclet number is increased there is a greater probability of finding
particles on the upstream side of the reference particle. Here, the action of the flow is
to compress particle pairs, whereas downstream from the reference particle the shear
flow exerts an extensional force separating particle pairs. At high Péclet numbers, the
boundary-layer is seen to separate from particle contact and enter the bulk along
downstream trajectories that outline the wake. The emergence of such wakes, or
shadow zones, in strong flows is well known, and the microstructure of a strongly
sheared suspension is captured well by the schematic suggested early on by Russel et
al. (1989, p. 490).

To capture this evolving behaviour two approaches were used to solve (2.6) for
the pair-distribution function, or, more conveniently, for the structural deformation
f(r) = g(r) − 1. For Peb up to O(1), a surface spherical harmonic expansion of f(r),
similar to that used by Lionberger (1998), is employed, whereas for Peb > 2 the
solution is obtained by a finite-difference method. In order for an expansion method,
such as the surface spherical harmonic expansion, to capture the behaviour seen in
figure 1, it must be of high order, which proves to be computationally very expensive.
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For strong flows, finite-difference methods were found to be more amenable for
numerically evaluating the complex microstructures at large Peb, including the rapid
variation of f(r) near r = 2 and the growing downstream wake.

The surface spherical harmonic expansion proceeds by defining the expansion
coefficients Blm by

f(r;Peb) =
∑
l,|m|6l

Blm(r;Peb)Ylm(θ, ϕ), (4.1)

where Ylm(θ, ϕ) is the surface spherical harmonic defined as

Ylm(θ, ϕ) =

(
2l + 1

4π

(l − |m|)!
(l + |m|)!

)1/2

P
|m|
l (cos θ)eimϕ, (4.2)

with the associated Legendre polynomial

P
|m|
l (x) = (1− x2)m/2

dmPl(x)

dxm
, (4.3)

where Pl(x) is the lth Legendre polynomial.
The expansion for f(r) is substituted in the Smoluchowski equation (2.6) and the

boundary conditions (2.9) and (2.10), which results in a series of coupled ordinary
differential equations after use of the orthogonality property of the spherical har-
monics,

∫
dΩYlmY

∗
pq = δlpδmq . Here, Y ∗lm is the complex conjugate of Ylm and δij is the

Kronecker delta function. The ordinary differential equations governing the expansion
coefficients Blm(r;Peb) take the following form

G(r)
d2Bpq

dr2
+

(
2
G(r)

r
+

dG(r)

dr

)
dBpq
dr
− p(p+ 1)

r2
H(r)Bpq

= 1
2
PebW (r)β1 + 1

2
Peb

∑
l,|m|6l

{(
W (r)Blm + r(1− A(r))

dBlm
dr

)
β2

+(1− B(r))(β3 + β4)Blm + (β5 + β6)Blm

}
, (4.4)

with the no-flux boundary condition, evaluated at r = 2, as

G(r)
dBpq
dr

= Peb(1− A(r))

β1 + β2

∑
l,|m|6l

Blm

 , (4.5)

and the far field, no deformation boundary condition

Bpq → 0 as r →∞. (4.6)

The constants, βi with i = 1, . . . , 6, depend on l, m, p and q, and consequently, the
ordinary differential equations in (4.4) are coupled. In addition, the constants depend
on the specific flow-type, and they are defined as

β1 =

∫
dΩ(r̂ · 〈Ê 〉 · r̂)Y ∗pq, (4.7)

β2 =

∫
dΩ(r̂ · 〈Ê 〉 · r̂)YlmY ∗pq, (4.8)

β3 =

∫
dΩ(r̂ · 〈Ê 〉 · θ̂)

∂Ylm

∂θ
Y ∗pq, (4.9)
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y

z

r

x

θ

Figure 2. Spherical coordinate system with the somewhat unconventional choice of the flow in the
z-direction and the gradient along the x-direction.

β4 =

∫
dΩ(r̂ · 〈Ê 〉 · ϕ̂)

1

sin θ

∂Ylm

∂ϕ
Y ∗pq, (4.10)

β5 =

∫
dΩ(r̂ · 〈Ω̂〉 · θ̂)

∂Ylm

∂θ
Y ∗pq, (4.11)

β6 =

∫
dΩ(r̂ · 〈Ω̂〉 · ϕ̂)

1

sin θ

∂Ylm

∂ϕ
Y ∗pq. (4.12)

In the above, θ̂ and ϕ̂ are unit vectors in the θ- and ϕ-directions in the spherical
coordinate system shown in figure 2. The angular derivatives are evaluated analytically
from (4.2) and (4.3).

The number of equations in (4.4) are reduced by noting that f(r) must be a
real-valued function, requiring that the expansion coefficients satisfy Blm = Bl,−m.

Furthermore, for the simple shear flow in the present analysis, with 〈Γ̂〉 = ẑx̂, a
further simplification arises because of the symmetry of the flow: Blm = 0 when l is
odd. The integrals for β1–β6 in (4.7)–(4.12) are evaluated analytically with respect to
ϕ and numerically with respect to θ, using the properties of products of associated
Legendre polynomials and powers of sin θ and cos θ (McQuarrie 1983; Vicic 1999).

The remaining ordinary differential equations for the expansion coefficients in (4.4)
are solved numerically by approximating them by finite differences. Prior to this step,
the radial domain is transformed from r ∈ [2,∞] to t ∈ [0, 1] by introducing the
radial variable t = 2/r. This transformation permits the far field boundary condition
to be rigorously enforced since it is now moved to the finite domain at t = 0.
This procedure avoids any ambiguities associated with having to apply the far field
boundary condition at finite separations as done in a previous numerical solution of
the two-particle Smoluchowski equation (Lionberger 1998).

The ordinary differential equations are solved on a uniformly discretized t-grid with
an O(∆t4) finite-difference scheme. This scheme results in a band diagonal matrix,
the inverse of which is used to obtain the coefficients Blm for an arbitrary choice
of the maximum value of l, denoted by lmax, in the expansion of f(r). The band
diagonal matrix is solved by a direct LU-decomposition method (Press et al. 1992).
The advantage of using a direct method, as opposed to an iterative method, in
evaluating the inverse of the band diagonal matrix is that it avoids the convergence
problems generally encountered with iterative methods applied to the solution of
the Smoluchowski equation at large Peb. The penalty is the large, internal memory
requirement for storing the matrix, which contains a large number of null entries. As
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a consequence, solutions can only be realized in practice for lmax = 14 when the radial
grid consists of 400 nodes because of the prohibitive size of the band diagonal matrix.
On the other hand, because the solution method is direct, solutions for any Peb can
be obtained. Naturally, as Peb →∞ such solutions of the truncated set of differential
equations are not accurate as the true solution requires, in principle, lmax → ∞ as
Peb → ∞. Owing to this limitation on the value of lmax, only results that lie within
0.1% of those calculated using lmax + 2 are shown.

To solve the Smoluchowski equation accurately at higher Peb it is necessary to
resolve the detailed structure of the boundary-layer while maintaining sufficient res-
olution in the far field to capture the behaviour of the growing wake region (see
figure 1). This poses a problem for any numerical solution method because the
boundary-layer thickness scales as Pe−1

b , whereas the range of the wake increases
linearly with Peb (Brady & Morris 1997). In this work the Smoluchowski equation in
the interval 2 6 Peb 6 200 is approximated by a finite-difference equation discretized
on a grid which places a large number of nodes in the boundary-layer but maintains
nodes, albeit sparsely placed, in the far field. As with the spherical harmonic expan-
sion – although now the angular derivatives are handled also with the finite-difference
method – the inverse of a sparse matrix must be determined (Press et al. 1992). In
this case, a lower-order, centred-difference approximation (derivatives with respect to
the the azimuthal angle were approximated by forward-differences) was used because
the matrix is considerably larger owing to the incorporation of the angular depen-
dence. The matrix of coefficients is tridiagonal with fringes, and it was inverted by
a rapid back-substitution algorithm for tridiagonal matrices (Press et al. 1992) with
corrections due to the fringes determined by iteration (Ng 1974).

The convergence of the iteration becomes progressively slower with increasing Peb.
For Peb ∼ 300, it no longer converges, necessitating an alternative approach. Since
the rheological properties at large Pe are strongly dependent on the behaviour of the
boundary layer (Brady & Morris 1997; Vicic 1999), an equation approximating the
Smoluchowski equation in the boundary layer, formulated in Appendix B, is solved.
In this way the details of the boundary layer are kept at the expense of obtaining
the correct far-field behaviour. The resulting boundary-layer equation for g(r) is (cf.
(B 4))

G
∂2g

∂y2
+ Q

∂g

∂y
+
HPe−2

b

4 sin θ

(
∂

∂θ

(
sin θ

∂g

∂θ

)
+

1

sin θ

∂2g

∂ϕ2

)
=
Pe−1

b

2

(
gWγr + (γθ − Beθ)∂g

∂θ
+

(γϕ − Beϕ)

sin θ

∂g

∂ϕ

)
, (4.13)

where y = Peb(r − 2), Q = dG/dy + GPe−1
b (1 − 1

2
yPe−1

b ) − γr(1 − A)(1 + 1
2
yPe−1

b ),

and we have neglected terms of O(Pe−3
b ). The quantities γi and ei are projections of

〈Γ̂〉 · r̂ and 〈Ê 〉 · r̂, respectively (cf. (B 2) and (B 3)), in the spherical coordinate system.
Contrary to the full Smoluchowski equation, the diffusional terms in the left-hand
side of (4.13) do not include a factor r−2. Thus, this truncated equation overestimates
diffusion at large radial separations. As a consequence, the growth of the wake region
with increasing Peb is diminished; the wake, however, is still present and extends
far downstream from the reference particle. This property makes this boundary-layer
equation considerably simpler to solve numerically. In principle, the solution should
be matched to a solution in the outer, convection-dominated region. This was not
pursued because the matching will occur at different radial separations depending on
the angles. Instead, the boundary-layer equation was taken to represent the solution
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in the entire domain. The solution of the boundary-layer equation was obtained in
the same way as that of the full Smoluchowski equation.

To extract results at large Peb for b/a→∞, for which there is a large accumulation
of density in the boundary layer (cf. figure 9), a systematic dependence of the
results on the angular resolution was noted. This problem was essentially eliminated
by performing calculations as a function of angular resolution, followed by an
extrapolation to infinite resolution.

5. Results
5.1. Microstructure and rheology at small Pe

It is well known that in the Smoluchowski equation at small Péclet numbers convection
becomes as important as diffusion for sufficiently large separation distances r ∼
O(Pe−1/2). As a consequence, a regular perturbation expansion of the structure
produces a solution that is valid to leading-order in an inner region which must be
matched to the structure in the outer, convection-dominated region. This approach
was adopted by Batchelor, who showed that the leading-order distortion of the
structure is all that is required to calculate the zero-shear limiting viscosity of dilute
Brownian hard spheres. To this order, the colloidal suspension is Newtonian as the
normal stress differences are zero. Subsequently, Brady & Vicic (1995) demonstrated
that the lowest-order term in the inner expansion for the structure that must be
identified by matching to the outer solution is proportional to Pe5/2. Consequently,
the perturbation expansion of f(r) proceeds as

f = f1Pe+ f2Pe
2 + f5/2Pe

5/2 + · · · (5.1)

As the next higher-order term in the inner expansion is of O(Pe2), i.e. of lower order
than the first mismatched term, it is sufficient to calculate this lower-order deformation
of the structure to obtain the leading-order normal stress differences. It suffices also
for determining the first correction to the equilibrium osmotic pressure, when the
definition of this quantity is extended to finite Pe. The appearance of normal stresses
at O(Pe2) signals the onset of non-Newtonian behaviour.

The approach adopted in this work is to solve the Smoluchowski equation by non-
perturbative methods. Although higher-order terms in the perturbation expansion of
the structure can be obtained, and have indeed already been discussed (Brady &
Morris 1997; Vicic 1999), a matched asymptotic expansion approach rapidly becomes
intractable as the Péclet number is increased further.

We will focus initially on the small-Pe departure from equilibrium as forced by a
simple shear flow. The purpose of this is two-fold: first, the accuracy of the numerical
solution method will be tested by comparing with the analytical and numerical results
of the exact perturbation theory; secondly, higher-order corrections to the rheological
properties of hard spheres will be determined, including the first correction to the
Newtonian shear viscosity, which will remove any confusion caused by conflicting
results reported in the past. To keep the number of parameters at a minimum, we
restrict our attention initially to hard spheres, both in the presence and absence of
hydrodynamic interactions. The effect of the extra excluded volume interactions is
postponed for the moment until later sections.

Figure 3 shows calculated results for the structural distortion f(r) = g(r) − 1 in
the absence of hydrodynamic interactions in the shear flow-gradient plane along
the extensional axis – the θ = 1

4
π axis as measured from the axis extending in the
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Figure 3. Structural deformation function f(r) in the absence of hydrodynamic interactions as a
function of radial separation r and Pe along the extensional axis in the shear flow-gradient plane.
Solid lines show the analytical perturbation theory correct to O(Pe2). The inset illustrates that the
separation distance where f(r) is a maximum scales with Pe−1/2.

direction of flow (see figure 2). For small separation distances the distortion decays
as − 16

3
r−3Pe(r̂r̂ : Ê ), as first determined by Batchelor (1977), which becomes − 8

3
Pe

on the extensional axis as seen in figure 3. Adding the O(Pe2) correction extends the
range of validity of the solution to distances rPe1/2 ∼ O(1). As seen in figure 3, the
inner solution correct to O(Pe2) describes the structure in a region that shrinks with
increasing Pe. This behaviour is consistent with diffusion being increasingly confined
to small separations, aside for regions in the flow where the relative particle velocity
vanishes (θ ∼ 0 and π).

The O(Pe2) result is positive, and it enhances the particle density in the extensional
quadrant such that f(r) becomes positive at large separations. Sufficiently far from
the reference particle, however, the structural distortion vanishes, which leads to
a maximum in f(r) on the extensional axis. The inset in figure 3 shows that the
separation distance where f(r) acquires a maximum value scales as Pe−1/2, consistent
with the rapid variation in f(r) belonging to the matching region of the Smoluchowski
equation. Previous workers have studied this region in detail via the Fourier transform
of the structural distortion (Dhont 1989; Yan & Dhont 1993; Blawzdziewicz & Szamel
1993).

The rheological properties of hard-sphere suspensions in the absence of hydro-
dynamic interactions derive from the contact value of the pair-distribution function.
In figure 4 this contact value is compared to the exact perturbation theory result
in the shear flow-gradient plane (ϕ = 0). In this comparison, the O(Pe2) term has
been isolated by showing (f − f1Pe)/Pe as a function of Pe and comparing with
the analytical result for f2Pe = 2

27
Pe(sin2 θ − cos2 θ) + 94

945
Pe. As seen, the f2 term
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Figure 4. Angular dependence of f(r) at contact (r = 2) in the shear flow-gradient plane as a
function of the Péclet number in the absence of hydrodynamic interactions; from bottom-to-top:
Pe = 10−5, 10−4, 10−3, 10−2 and 10−1. Solid lines show the analytical O(Pe2) perturbation result:
Pe
(

2
27

(sin2 θ − cos2 θ) + 94
945

)
(Brady & Vicic 1995).

captures the angular behaviour of the structural distortion up to Pe ≈ 0.01. The next
correction to this result is a depletion of particle density for all θ.

For hard spheres in the absence of hydrodynamic interactions, the result of the
perturbation theory of Brady & Vicic is summarized by the following expression for
the particle stress

ΣP
ηsγ̇φ2

= −nkT (1 + 4φ)

ηsγ̇φ2
I + 24

5
〈Ê 〉 − Pe( 16

15
(〈Ê 〉 · 〈Ω̂〉+ 〈Ω̂〉T · 〈Ê 〉)

+ 304
105
〈Ê 〉 : 〈Ê 〉I + 32

35
〈Ê 〉 · 〈Ê 〉) + O(Pe3/2). (5.2)

From this equation it is an easy task to extract the Newtonian shear viscosity and
the leading-order corrections to Newtonian rheological behaviour. The relative shear
viscosity, which is defined as the shear stress normalized by ηsγ̇, is identified as
ηr = 1 + 5

2
φ + 12

5
φ2, and the first and second normal stress differences are given

by N1/ηsγ̇φ
2 = 16

15
Pe and N2/ηsγ̇φ

2 = − 16
21
Pe. Finally, the shear-dependent osmotic

pressure is obtained from the trace of the particle stress as Π/nkT = 1 + 4φ +
16
45
φPe2. Analogous results for hard spheres with hydrodynamic interactions have

been reported by Brady & Morris (1997).
The Newtonian shear viscosity for hydrodynamically interacting hard spheres (ap-

proximated by b/a = 1.00001) is calculated numerically as ηr = 1 + 5
2
φ + 5.92φ2

in this work, which comprises the hydrodynamic high-frequency shear viscosity
ηHr = 1 + 5

2
φ + 5.00φ2 summed with the Brownian contribution ηBr = 0.92φ2. To

identify the leading-order corrections to the φ2–coefficients, we define the devia-
tions: ∆ηTotal/φ2 = 5.92− (ηr − 1− 5

2
φ)/φ2, ∆ηH/φ2 = (ηHr − 1− 5

2
φ)/φ2 − 5.00, and
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Figure 5. Small Pe variation of the relative viscosity for hard spheres with and without hydro-
dynamic interactions. The following contributions are shown: ∆ηTotal = 5.92φ2 − (ηr − 1 − 2.5φ);
∆ηH = (ηHr − 1 − 2.5φ) − 5.00φ2; ∆ηB = 0.92φ2 − ηBr ; ∆ηP = 2.4φ2 − ηPr . Note that ηPr is the
hard-sphere viscosity in the absence of hydrodynamic interactions.

∆ηB/φ2 = 0.92−ηBr /φ2. Similarly, for hard spheres with no hydrodynamic interactions
we write the deviation from the interparticle viscosity as ∆ηP/φ2 = 12

5
− ηPr /φ2.

Figure 5 shows the deviations from the Newtonian viscosity as functions of Pe.
All are positive, showing that the total viscosity decreases initially as Pe increases.
The purely hydrodynamic component of the viscosity is found to increase mono-
tonically with Pe, which agrees qualitatively with Stokesian dynamics simulations of
concentrated systems (Foss & Brady 2000b). This result differs, however, from the
Lionberger study, in which this contribution was found to exhibit a minimum at a Pe
value slightly above unity. We can only conjecture that this discrepancy is connected
to the different strategies used to enforce the far field boundary condition in the
numerical solution for the microstructure (see § 4).

Both the hydrodynamic and Brownian contributions to the viscosity deviate from
their Newtonian values with low Pe asymptotes proportional to Pe2. This arises
through the O(Pe3) perturbation to the structure, f3, which produces a Brownian
viscosity of O(Pe2). In contrast to the Brownian contribution, the hydrodynamic
viscosity increases with Pe. However, at small Pe the variation in the hydro-
dynamic viscosity is more than an order of magnitude smaller than the variation
in the Brownian component, so the net result is a shear thinning viscosity. The results
in figure 5 are consistent with the analysis of Brady & Vicic (1995), in which they
determined that f5/2 only contributes to the isotropic stress. Previous studies predicted

that the viscosity shear thins proportional to Pe1/2 (Dhont 1989), but the influence of
the no-flux boundary condition was neglected. It is the no-flux boundary condition
that forces a finite structural deformation, and it acts as a quadrupole forcing, which
ultimately sets the first mismatched term at O(Pe5/2) in the expansion.

Figure 5 reveals unexpectedly that the hard-sphere viscosity of suspensions in the
absence of hydrodynamic interactions shear thins in near quantitative agreement with
the Brownian viscosity contribution of hard spheres with hydrodynamic interactions
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Figure 6. Small Pe variation of first and second normal stress differences for hard spheres without
hydrodynamic interactions. Solid lines show exact results of the O(Pe2) perturbation theory.

included. Hence, at least for dilute suspensions, adding a static, high-frequency vis-
cosity to the viscosity determined without hydrodynamics will produce an excellent
approximation for Pe < 1. Thus, the absence of hydrodynamic interactions does not
affect the fact that the viscosity decreases at small shear rates as Pe2, despite what
may be inferred from previous numerical results (Blawzdziewicz & Szamel 1993).

The present results confirm what has been known for some time: shear thinning
is not caused by an ordering of the particles in the flow (Ackerson 1990); rather, it
is caused by the decrease of the Brownian contribution to the viscosity, which far
outweighs the small increase of the hydrodynamic component with Pe. Brownian
motion tends to restore the equilibrium configuration, but, as the strength of the flow
increases, the relative time scale available for the Brownian movement to achieve
structural relaxation progressively decreases as directly reflected by the Péclet num-
ber; consequently, the Brownian contribution to the viscosity decreases. Computer
simulations (Bossis & Brady 1989; Phung et al. 1996; Foss & Brady 2000b) and
recent, detailed experimental measurements (Bender & Wagner 1995; Kaffashi et al.
1997; O’Brien & Mackay 2000) are all in firm agreement on this point.

As discussed in detail in past work (Brady & Vicic 1995; Brady & Morris 1997),
asymmetries in the pair-distribution function result in finite normal stress differences.
Figure 6 shows that the numerical solution based on the spherical harmonic expansion
of the microstructure is able to reproduce the exact small-Pe limiting behaviour of the
normal stress differences for hard spheres in the absence of hydrodynamic interactions.
The normal stress differences are seen to be proportional to Pe2 for small Pe, and
they are caused by the second-order microstructure deformation f2 in the regular
perturbation expansion (5.1) (Brady & Vicic 1995). The first normal stress difference
is positive at small Pe, whereas the second normal stress difference is negative.

By subtracting the exact small-Pe limits from the normal stress differences, we



Rheology of dilute colloidal suspensions 255

100

10–1

10–2

10–3

10–4

10–3

10–2

10–1

100

10–4 10–3 10–2 10–1 100 101

Pe

–N
2/
η

sγ
φ

2
|N

1|
/η

sγ
φ

2

0.899Pe

total
hydrodynamic

Brownian

0.788Pe

Figure 7. Small Pe variation of the first and second normal stress differences for hard spheres
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Vicic 1995). Our numerical results for the hydrodynamic and Brownian contributions are shown as
broken curves.

find that the next higher-order contribution to both N1 and N2 is proportional to
Pe7/2. This observation is consistent with the matched asymptotic analysis of Brady
& Vicic, who determined that f5/2 in (5.1) only contributes to the osmotic pressure.
Furthermore, Vicic (1999) has shown that – provided the expansion (5.1) proceeds in
half-order powers of Pe – a f3Pe

3 regular term in (5.1) only contributes to the shear
viscosity and the osmotic pressure, but leaves the normal stress differences unchanged
from their initial, small-Pe asymptotes. The results in figures 5 and 6 (cf. also figure 8)
demonstrate that this is indeed the case.

Adding the effect of hydrodynamic interactions (b/a = 1.00001) does not alter the
qualitative behaviour of the normal stress differences in the small Pe limit. As seen
in figure 7, N1 is positive and N2 is negative, and both are proportional to Pe2 in the
limit Pe→ 0. Figure 7 further demonstrates that the positive Brownian contribution
far outweighs the negative hydrodynamic contribution to N1 (which is proportional
to Pe7/2), whereas the Brownian and hydrodynamic contributions to N2 are both
negative and of similar magnitude. Again, the numerical solution method is in good
agreement with the exact small-Pe asymptotic results of Brady & Vicic, which give
N1 = 0.899ηsγ̇φ

2Pe and N2 = −0.788ηsγ̇φ
2Pe for Pe → 0. Although not shown in

figure 7, the next higher-order contributions to N1 and N2 are proportional to Pe7/2,
as for hard spheres without hydrodynamic interactions.

Shear-induced anisotropies in the microstructure lead to departures in the gener-
alized, shear-dependent osmotic pressure from its equilibrium value. Note that the
osmotic pressure of hard spheres without hydrodynamics is of a particularly simple
form (see (3.8)), and reflects only changes in the contact value of the pair-distribution
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a small excluded volume parameter, b/a− 1 = 10−5, which explains the presence of an interparticle
contribution to the osmotic pressure.

function. Brady & Vicic determined that the initial departure from the equilibrium
value of the osmotic pressure is caused by the f2Pe

2 term in (5.1). The numerical re-
sults in figure 8 are in accord with this conclusion. Figure 8(a) shows that the osmotic
pressure of hard spheres in the absence of hydrodynamic interactions is increased
over its equilibrium value by a weak flow. The next higher-order contribution to
the osmotic pressure originates from f5/2Pe

5/2 in (5.1), which is the first mismatched
term between the inner and outer expansions of the microstructure. This finding is in
agreement with the matched asymptotic analysis of Brady & Vicic, who found this
term to contribute only to the osmotic pressure while leaving the other viscometric
functions unchanged.

For hard spheres with hydrodynamic interactions (b/a = 1.00001) the osmotic
pressure is determined by several contributions, all of which are proportional to
Pe2 at small Pe. Figure 8(b) shows that the purely hydrodynamic contribution is
positive, and it shows that the numerical results compare well with the leading-
order deviation calculated by Jeffrey et al. (1993). The contribution which is labelled
as Brownian in this figure derives from the Brownian stress quoted in (3.7) and
is negative. It is an indirect hydrodynamic contribution as it involves one of the
pressure moments defined by Jeffrey et al. (1993) (see also Appendix B), as well
as radial density gradients. Because we do not treat the exact hard-sphere limit –
having instead approximated hard spheres by a small value of the excluded volume
parameter, specifically b/a − 1 = 10−5 – the usual hard-sphere contact contribution
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Figure 9. The non-equilibrium pair-distribution function at contact in the shear flow-gradient plane
as a function of θ and Pe for hard spheres in the absence of hydrodynamic interactions. Results
from the solution of the full Smoluchowski equation are shown as solid lines and the solutions from
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prediction from the boundary-layer theory of Brady & Morris (1997): g(2, θ, 0)Pe−1 = − 2

3
sin θ cos θ.

belongs by definition to the interparticle stress. This explains the appearance of an
interparticle contribution to the hard-sphere osmotic pressure. For true hard spheres,
this contribution would be labelled as Brownian, and it would be indistinguishable
from the interparticle contribution in figure 8.

5.2. Microstructure and rheology at large Pe

As described in § 4, the direct numerical solution of the surface spherical harmonic
expansion of the Smoluchowski equation becomes too expensive computationally at
O(1) values of Pe. Applying the finite-difference scheme to the Smoluchowski equation
extends the numerical solution to Pe ≈ 200. For even higher Pe, a simpler equation is
solved that is valid near r = 2 where the boundary-layer appears in the compressional
quadrant of the flow. This boundary-layer equation is derived in Appendix B.

For hard spheres in the absence of hydrodynamic interactions there is no reduction
of the mobility when two particles approach one another. As a consequence, particle
density in the boundary-layer accumulates rapidly with increasing Pe. The reference
particle acts as an obstruction to particles being advected from upstream, and they are
collected in a small region near particle contact in the compressional quadrant of the
flow (1

2
π < θ < π). Downstream from the reference particle, in the extensional region

of the flow, there is no obstruction to transport, and particles are simply advected
downstream and the boundary-layer does not exist in this region (cf. figure 1). For
strong flows, large density gradients develop in the boundary-layer such that there is
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a significant driving force for diffusion at small particle separations despite the strong
convection forces.

Figure 9 shows the contact value of the non-equilibrium pair-distribution function
g(r) in the shear flow-gradient plane (ϕ = 0) as a function of the angle θ and Pe
for hard spheres under neglect of hydrodynamic interactions. As seen, there is a
build-up of particle density in the compressional region with increasing Pe, whereas
the extensional region is almost entirely depleted of particles at large Pe. The inset
demonstrates that the growth of the boundary-layer scales linearly with Pe. Moreover,
the density profiles collapse onto a single curve at high Pe when scaled by Pe.
This result is consistent with the boundary-layer theory of Brady & Morris (1997),
although the shape and precise growth rate with Pe differ somewhat. They obtained
the following approximate result for the pair-distribution function at contact in the
compressional region as Pe→∞

g(2) = − 2
3
Pe sin θ cos θ cosϕ. (5.3)

This result is shown in the inset of figure 9 as the bold curve. The maximum value
of g(2) is located on the compressional axis (θ = 3

4
π), whereas the actual maximum

occurs slightly further downstream. In addition, the pair-distribution function is more
attenuated than the theoretical prediction. The maximum of g(2) is pushed down-
stream because of vorticity, an effect that will be seen to be far more pronounced
when hydrodynamic interactions are not neglected (cf. figure 10), whereas the broad-
ening of g(2) is caused by angular diffusion. Both vorticity and angular diffusion were
neglected in the asymptotic theory of Brady & Morris; in particular, they restricted
diffusion to the radial direction, which removes a mode of escape from the boundary
layer and causes an overestimation of g(2). Nevertheless, the important facts that
the contact value of the pair-distribution function grows linearly with Pe and that
the boundary layer is absent downstream from the reference particle are correctly
captured by their theory. These slight deviations affect the numerical values for the
rheological properties as Pe→∞, particularly N1.

There are two curves shown for Pe = 400 in figure 9, one resulting from the sol-
ution of the full Smoluchowski equation, and the other resulting from the solution of
the boundary-layer equation. The two solutions are in close agreement, which demon-
strates that the simpler boundary-layer equation provides an accurate description of
the boundary-layer structure.

The inclusion of hydrodynamic interactions does not significantly alter the char-
acteristic features of the boundary layer. The results for near hard spheres (b/a =
1.00001) in figure 10 show that the particle density increases with increasing Pe in the
compressional region of the flow, while the extensional region becomes progressively
more depleted. However, the detailed structure of the boundary-layer differs from the
case of hard spheres in the absence of hydrodynamic interactions. The magnitude of
the pair-distribution function at contact is markedly smaller for a given Pe. Also,
with increasing Pe, the angular location of the maximum is displaced downstream
from the compressional axis. Both of these effects are explained by the presence of
hydrodynamic lubrication forces. Just as the squeezing together of two particles in
the compressional region of the flow is resisted by the expulsion of solvent from the
narrow gap separating them, so is the pulling apart of the pair in the extensional
region resisted by the replenishment of solvent in the growing gap. The former action
tends to decrease the contact density in the compressional region, and the latter action
creates a finite contact density in the extensional region.

The Pe-dependence of the angular location of the maximum value of g(2) is
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Figure 10. The non-equilibrium pair-distribution function at contact in the shear flow-gradient
plane as a function of θ and Pe for hard spheres with hydrodynamics (b/a = 1.00001). Results from
the solution of the full Smoluchowski equation are shown as solid lines and the solutions from the
boundary-layer equation are shown as dashed curves. From bottom-to-top: Pe = 10 (dashed line),
15, 20, 30, 40, 60, 100, 200 and 400 (bold line); and from the boundary-layer equation Pe = 400,
600, 800 and 1000. The short-dashed curve is a best fit to the maxima in g(2). The inset shows that
scaling by Pe1/2 reduces the maximum in the compressional quadrant to O(1).

described by 0.60π+O(Pe−1), which suggests that the particle density in the boundary-
layer is distributed asymmetrically even on approaching the Pe−1 = 0 limit. The inset
in figure 10 shows that the contact value of the pair-distribution function no longer
scales linearly with Pe as in the absence of hydrodynamic interactions. Instead, a
sublinear scaling in the neighbourhood of Pe1/2 is evidently followed. Brady & Morris
determined an increase proportional to Pe0.78 for true hard spheres in pure straining
flow. The exponent 0.78 comes from matching with the outer, non-Brownian solution
of Batchelor & Green (1972), which is strictly valid only for pure straining motion.
The presence of closed particle trajectories in the Pe−1 = 0 limit in simple shear flow
precludes a determination of the outer solution and the exponent may differ from
0.78. Preliminary results for near hard spheres in planar extensional flows suggest
indeed that the contact value of g(r) on the compressive axes scales as Pe0.78.

This weaker accumulation of particle density in the boundary layer is compensated
by a concomitant increase of the boundary-layer thickness, which is found to scale
close to Pe−1/2, such that a volume integration over the pair-distribution function
in the boundary-layer may yield a finite result in the Pe−1 → 0 limit. However, the
analysis of Brady & Morris demonstrates that hydrodynamically interacting hard
spheres at Pe−1 = 0 is a special case within this singular limit for which we should
expect a disparity in the Pe-scalings of the boundary-layer density (less than Pe) and
thickness (Pe−1) such that non-Newtonian effects vanish irrespective of the boundary-
layer asymmetry. We see that even an excluded volume parameter b/a = 1.00001
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differs from the pure-hydrodynamic limit and results in non-zero non-Newtonian
effects as Pe → ∞. The magnitude of the non-Newtonian effects, particularly the
normal stress differences, however, are found to extrapolate to values close to zero as
b/a→ 1, in keeping with the analysis of Brady & Morris. This observation is also in
agreement with the calculations of Zarraga & Leighton (2001) and Wilson & Davis
(2000), both of whom considered the non-Brownian, Pe−1 = 0 limit.

5.3. Effect of excluded volume repulsion

To study the effect of repulsive interactions on the rheology, we employ the simple
excluded volume interaction in (2.5), whereby particles are maintained at least a
distance 2b > 2a from one another. Thus, in addition to the volume fraction and
the Péclet number, the parameter b/a is introduced which characterizes the range
of the repulsive interaction. The cases discussed so far, hydrodynamically interacting
near hard spheres and hard spheres in the absence of hydrodynamic interactions,
correspond to the two limits b/a = 1.00001 ≈ 1 and b/a → ∞, respectively. By
selecting b/a values intermediate to these limits, we tune the interactions in the
suspension from being hydrodynamically dominated at b/a values near unity to
purely thermodynamic in the b/a→∞ limit.

Figure 11 shows the variation of the φ2
b-coefficient of the shear viscosity with Peb,

where φb =
(
b/a
)3
φ and Peb =

(
b/a
)2
Pe. The shear viscosity has been divided

into contributions resulting from hydrodynamic interactions, Brownian motion, and
interparticle force interactions, the sum of which yields the total shear viscosity. This
division of the shear viscosity corresponds to the division of the particle stress in
(3.6)–(3.8). For b/a values close to unity (b/a = 1.00001 and 1.001), where hydro-
dynamic interactions are important, the shear viscosity first shear thins and then
shear thickens. At small Peb, the shear viscosity is Newtonian and is determined
essentially by a hydrodynamic contribution and a smaller, but significant, Brownian
contribution. At intermediate Peb the viscosity shear thins, which is caused by the
decrease of the Brownian contribution. As Peb is further increased, the Brownian con-
tribution becomes negligible, and the shear viscosity is determined essentially only by
the hydrodynamic component. Since the hydrodynamic viscosity is a monotonically
increasing function of Peb as particles are driven into close lubrication contact by the
shearing forces, the viscosity shear thickens. This behaviour is completely in accord
with Stokesian dynamics simulations (Phung et al. 1996; Foss & Brady 2000b).

On increasing b/a further, the φ2
b-coefficient in the viscosity expansion decreases.

This behaviour is, however, somewhat deceiving because of the normalization chosen.
Extracting instead the coefficient in front of φ2 – the volume fraction based on the
actual, physical size of the particles – the results in figure 11 must be multiplied
by (b/a)6. The results now show that the Newtonian low-shear viscosity increases
as b/a increases. In fact, hard spheres with b ≡ a yield the smallest low-shear
viscosity, in agreement with the notion that both repulsive and attractive (see, however,
Bergenholtz & Wagner 1994) interactions increase the low-shear viscosity over that
of hard-sphere suspensions (Russel 1984; Russel et al. 1989).

When the range of the repulsion is increased, particle pairs no longer experience the
full extent of the lubrication forces, which only act close to physical particle contact.
As a consequence, an overall lower total shear viscosity to O(φ2

b) is obtained, but one
which has significant contributions from all sources of interactions. For b/a = 1.1, the
interparticle contribution is the dominant thermodynamic contribution. Recalling that
effects of Brownian motion only appear indirectly through hydrodynamic coupling,
we can rationalize the overall decrease of the Brownian contributions with increasing
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b/a since hydrodynamic interactions become weaker with increasing b/a. This is
also evident from the smaller, though still dominant, hydrodynamic viscosity for
b/a = 1.1. At large Peb, the weak shear thickening of the hydrodynamic viscosity
is counterbalanced by the shear thinning of the interparticle viscosity such that a
nearly Newtonian high-shear viscosity results. Hence, b/a ≈ 1.1 delineates suspensions
for which the viscosity shear thins followed by some amount of shear thickening
(b/a < 1.1) and those which exhibit a shear thinning viscosity followed by a well-
defined high-shear Newtonian plateau with no shear thickening (b/a > 1.1).

In the limit b/a→∞, corresponding to hard spheres under neglect of hydrodynamic
interactions, the shear viscosity shown in figure 12 is determined by the interaction
potential alone. The Newtonian low-shear plateau, where the φ2-coefficient is equal
to 12

5
, is followed by shear thinning, the initial part of which has been the focus of

previous investigations (Blawzdziewicz & Szamel 1993; Lionberger 1998). At larger
Pe, the viscosity reaches a terminal plateau with a φ2-coefficient value not too much
below unity. The boundary-layer analysis of Brady & Morris (1997) with the simple
radial-balance approximation gives a somewhat higher prediction of 6

5
. Recalling

that the shear viscosity in this limit is directly related to the contact value of the
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Figure 12. The φ2-coefficients of the shear viscosity, first and second normal stress differences, and
the osmotic pressure for hard spheres in the absence of hydrodynamic interactions as a function
of Pe.

pair-distribution function, the source of the discrepancy is seen in figure 9 to be the
overestimation of the density in the boundary-layer.

The φ2
b-coefficient of the first normal stress difference is shown in figure 13 as

a function of Peb and b/a. At small Peb, N1 vanishes regardless of the b/a value,
indicating indeed that the suspension behaves as a Newtonian liquid. As Peb is
increased, the φ2

b-coefficient of N1 is initially positive, but changes sign as Peb is
increased further. This trend holds for all b/a shown in figure 13. The main difference
in going from small to larger b/a is a gradual shift from Brownian motion being the
dominant thermodynamic contribution to N1 for b/a ≈ 1 to the interparticle force
contribution exceeding the Brownian at b/a = 1.1.

For all Peb and b/a in figure 13 the hydrodynamic contribution to the φ2
b-coefficient

of N1 is negative whereas the Brownian and interparticle force contributions are
positive. The thermodynamic contributions to N1 are proportional to the surface
integral − ∫ dΩ(ẑẑ−x̂x̂)g(Ω), which, with the coordinate system as in figure 2, becomes

− ∫ dϕ dθ sin θ(cos2 θ − sin2 θ cos2 ϕ)g(θ, ϕ) ∼ − ∫ dθ sin θ cos 2θg(θ, 0), where dΩ =

dϕ dθ sin θ is the solid angle. Since
∫ 2π

0
dϕg(θ, ϕ) > 0 and

∫ 2π

0
dϕ cos2 ϕg(θ, ϕ) > 0, we

have evaluated the expression in the shear plane ϕ = 0. With g(θ, 0) from figures 9 and
10, we see clearly that the asymmetry about the compressive axis and the spill-over
of probability density onto the extensional axis ( 1

4
π < θ < 1

2
π), most noticeable with

hydrodynamics (figure 10), generates a positive thermodynamic N1.
Determination of the sign of the hydrodynamic contribution to N1 requires

a more careful consideration of the fore–aft asymmetry within the boundary
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layer. The dominant contribution comes from near-touching particles and we can
estimate the stress from the force moment −〈rF H

lub〉, with the hydrodynamic lubri-

cation force F H
lub ≈ −6πηsa

2r̂(r̂ · 〈Ê 〉 · r̂). Hence, we expect the hydrodynamic stress

to behave as
∫

dΩr̂r̂(r̂ · 〈Ê 〉 · r̂)g(Ω). The hydrodynamic contribution to N1 fol-

lows as NH
1 ∼

∫
dϕ dθ sin2 θ cos θ(cos2 θ − sin2 θ cos2 ϕ)g(θ, ϕ). Again, we evalu-

ate the pair-distribution function in the shear plane (ϕ = 0), which gives NH
1 ∼∫

dθ sin2 θ cos θ cos 2θg(θ, 0).
This analysis is too naive, however, because it neglects the internal structure of the

boundary layer; it results in NH
1 > 0 when we use the pair-distribution function at

r = 2 in figure 14. In contrast to the thermodynamic contributions to N1, which are
determined mainly by the angular location of the boundary layer in the shear plane,
NH

1 is primarily determined by the angular asymmetry within the boundary layer.
We must treat the boundary layer as having a finite radial thickness. Accordingly,
we interpret g(θ, 0) in the simple analysis above as

∫
bl

drg(r, θ, 0) (or, more accurately,

as g(θ, 0) ∼ ∫
bl

dr r2M(r)g(r, θ, 0)), where
∫
bl

dr . . . denotes a radial integration over
the extent of the boundary layer. From figure 14, in which the angular and radial
dependence of the pair-distribution function in the boundary layer is shown for
b/a = 1.00001 and Pe = 200, we observe that the boundary layer is convected
downstream rapidly as the radial separation increases. Physically, particles must be
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pulled apart on the extensional side to overcome the hydrodynamic lubrication forces,
which results in the rheometer plates being pulled inward – a negative N1.

In the absence of hydrodynamic interactions, or for b/a→∞, only the interparticle
interactions determine N1. For this case the φ2-coefficient of N1 is positive for all
Pe, and, as shown in figure 12, it asymptotes to what appears to be a small positive
value. The asymptotic boundary-layer calculation of Brady & Morris (1997) assumed
symmetry about the compressive axis (in order to obtain an analytical solution) and
therefore gives N1 = 0 as Pe→∞ for dilute hard-sphere suspensions. The numerical
solution reveals a small degree of asymmetry evident in figure 9 and therefore a
finite N1.

The φ2
b-coefficient of the second normal stress difference is seen in figure 15 to be

negative for all b/a and Peb, as are all its constituent contributions. In going from
b/a ≈ 1 to b/a = 1.1, the Brownian contribution decreases and is gradually overtaken
by the interparticle force contribution, while the hydrodynamic contribution is seen
to weaken. For large Peb, although difficult to ascertain from the results in figure 15,
the φ2

b-coefficient of N2 appears to reach finite values that increase in magnitude as
b/a is increased. This trend is in qualitative agreement with the results of Zarraga &
Leighton (2001) and Wilson & Davis (2000) for non-Brownian spheres with the same
excluded volume interaction as in (2.5).

Without any hydrodynamic interaction, the φ2-coefficient of N2, shown in figure 12,
remains negative and asymptotes to a Pe → ∞ value that is close to the theoretical
prediction of Brady & Morris (1997) given by 12/(5π). The influence of the down-
stream wake, which is a source of microstructural asymmetry (see figure 1), is seen to
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be minor so far as N2 is concerned, as the entire extensional quadrant was deleted in
the Brady & Morris treatment. It suffices to account for the boundary-layer structure
to obtain an accurate prediction for the Pe→∞ value of N2 for dilute hard spheres.
The calculations of Zarraga & Leighton (2001) for non-Brownian hard spheres also
yielded a result consistent with that of the Brady & Morris prediction.

The pressure and isothermal compressibility of a system of rigid particles suspended
in an incompressible solvent are indeterminate. Nevertheless, the colloidal particles are
free to explore any configuration and the system exhibits a well-defined compressibility
with respect to the particle coordinates. The suspension pressure in this sense is called
the osmotic pressure. At equilibrium, the solvent degrees of freedom only appear
indirectly through the particle–particle interaction potential (potential of mean force)
V (r). When the suspension is subjected to a flow the situation is no longer so
simple. The solvent now contributes to the osmotic pressure both through the altered
microstructure and through hydrodynamic interactions; the former is contained in
g(r) and the latter we have partitioned in hydrodynamic and Brownian parts in (3.6)
and (3.7).

The osmotic pressure is shown as a function of Peb and b/a in figure 16. For
b/a < 1.1, there is little difference among the results. A maximum is reached at O(1)
values of Peb. The maximum is caused by the interparticle component, since the
hydrodynamic and Brownian contributions behave almost identically to one another
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Legend as in figure 11.

but differ in sign. As seen in figure 16, this trend is independent of b/a. The sum of
the hydrodynamic and Brownian contributions does not precisely vanish, however,
which is demonstrated by the behaviour at small Pe in figure 8.

The large Pe limit is near zero for b/a of O(1), which is caused by the sublinear
increase in the accumulation of particle density in the boundary-layer. Upon increasing
b/a, the hydrodynamic and Brownian contributions gradually decrease in magnitude,
but the large Pe value increases in qualitative accord with the calculations of Zarraga
& Leighton (2001). For hard spheres without hydrodynamic interactions, figure 12
shows that the limiting value 8/(9π), predicted by Brady & Morris (1997), gives a
fairly accurate estimate for the Pe−1 = 0 limit of the osmotic pressure.

6. Discussion
The results of the previous sections illustrate, as noted by Russel (1980), that dilute

colloidal suspensions possess the same characteristic non-Newtonian flow behaviour
as concentrated suspensions. At small Péclet numbers, the shear viscosity exhibits a
Newtonian plateau followed by shear thinning. At larger Péclet numbers, the shear
thinning terminates either in a second Newtonian plateau or exhibits some degree
of continuous shear thickening. The shear thinning is caused by a mechanism that
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remains active also beyond the region of shear thinning; the microstructure is distorted
faster by the imposed flow than Brownian motion can restore isotropy.

In figure 17, the O(φ2
b) Brownian contribution to the relative shear viscosity has been

isolated as a function of Peb, and excluded volume parameter b/a. The Brownian
component decreases monotonically. At large Peb, the decrease is proportional to
Pe−1

b , although we note a somewhat faster decay for suspensions closer to the
hard-sphere limit. This Peb-scaling of the Brownian viscosity is predicted by the
theory of Brady & Morris (1997), and it is also in fair agreement with Stokesian
dynamics simulations of concentrated suspensions (Foss & Brady 2000b). Since the
Péclet number is the ratio of the relaxation time for diffusion to that of convection,
Brownian motion cannot restore the microstructure at the same rate the flow distorts
it and the Brownian viscosity shear thins at intermediate Peb. For large Peb, the rate
of structural recovery by Brownian motion saturates in the boundary layer, which
leads to a Pe−1

b scaling of the Brownian viscosity (Brady & Morris 1997; Foss &
Brady 2000b).

At small Peb, the initial departure from the Newtonian plateau is determined
by the Brownian component in figure 17 for b/a ≈ 1, because the magnitude of
the hydrodynamic variation is far smaller. On increasing b/a, the interparticle force
contribution increases gradually at the expense of the Brownian and hydrodynamic
viscosities, and for large b/a it is the dominant contribution. The calculations here
show that the deviations of the Brownian and interparticle force contributions to the
viscosity from their Newtonian values vary proportional to Pe2

b irrespective of b/a.
Hence, for all b/a, the total viscosity shear thins proportional to Pe2

b, which confirms
the results of previous analyses (Brady & Vicic 1995; Lionberger 1998).

Earlier work (Dhont 1989), although it contained the first correct diagnosis of the
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Smoluchowski equation as being singularly perturbed at small Pe, concluded that
shear thinning proceeds proportional to Pe1/2. Subsequent numerical calculations
(Blawzdziewicz & Szamel 1993) and experimental measurements (van der Werff,
de Kruif & Dhont 1989b) appeared to support this result. However, the present
analysis, together with the perturbation theory of Brady & Vicic (1995), should remove
any question regarding the precise nature of shear thinning in dilute suspensions.
Our results do show, however, that once the boundary-layer is well developed, the
hard-sphere viscosity exhibits a regime of shear thinning where the decrease is
approximately proportional to Pe1/2. This occurs in the range 0.5 < Pe < 5, which
corresponds rather well with the results reported by Werff et al. (1989b) for the lowest
volume fractions investigated.

As expected for large Peb and b/a ≈ 1, the rheology is determined primarily by
hydrodynamic interactions, whereas in the b/a→∞ limit the rheology is determined
only by the interparticle force contribution. In the former case, Brownian motion
plays a role only in so far as it affects the boundary-layer structure; as such, it is an
indirect effect (see figure 17 showing that the direct contribution to the stress from
Brownian motion is negligible at large Peb). At high shear rates, the viscosity can
either enter into a region of continuous shear thickening or terminate in a large-Peb
Newtonian plateau. The outcome is determined by the nature of the interparticle
force.

For the excluded volume interaction considered in this work, the degree of shear
thickening is modulated by the range of the excluded annulus. In figure 18(a) the
deviation of the hydrodynamic viscosity from its small Peb value, given by the high-
frequency dynamic viscosity η′∞, is shown for varying b/a. The hydrodynamic viscosity
at O(φ2

b) is always an increasing function of Peb, but for shear thickening to occur
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this increase must outweigh the decrease in the Brownian and interparticle force
contributions. As seen from figure 18(b), where we show the shear rate dependence
of the total viscosity less its small Peb value so that all curves start at zero for all
values of b/a studied, this condition is fulfilled when b/a ∼ 1; that is, shear thickening
occurs only when particles are permitted to approach sufficiently close to experience
the lubrication part of the hydrodynamic interaction. Although this information can
be gleaned from the data in figure 11, this plot shows clearly the effect of the
excluded volume parameter, and therefore hydrodynamics, on the shear thickening.
As b/a → 1 shear thickening occurs sooner and the magnitude increases. Both of
these observations are in accord with simulation and experiment. These results also
suggest that adding some degree of steric stabilization, e.g. through the addition of
adsorbing surfactant or surface-grafting of polymer, may be an effective means for
eliminating, or at least for postponing, the onset of shear thickening (see, e.g. Mewis
& Biebaut 2001). However, the situation is likely to be more complicated because
steric layers give rise to soft interactions and they will also affect the hydrodynamic
interactions among particles (Potanin & Russel 1995).

The large accumulation of density near particle contact in the boundary-layer was
noted early on in Stokesian dynamics simulations. In these concentrated systems the
presence of the boundary-layer manifests itself in cluster formation at large Pe, and it
was this cluster growth that was put forth as the mechanism causing shear thickening.
This explanation was in conflict with the order–disorder transition to which Hoffman
(1972) had earlier attributed the onset of shear thickening. In a recent view of the
state of affairs concerning the origin of shear thickening, Hoffman (1998) maintains
that the disruption of an ordered microstructure causes shear thickening. The latest
Stokesian dynamics simulation study of concentrated Brownian hard spheres reports
no evidence of structural ordering (Foss & Brady 2000b). The simulation results,
together with the present two-particle results on systems that intrinsically lack any
structural order, provide conclusive evidence for shear thickening being triggered
by the interplay between hydrodynamic lubrication interactions and boundary-layer
formation. Finally, experimental techniques that can resolve the hydrodynamic and
Brownian contributions to the viscosity also conclude that shear thickening is driven
by hydrodynamic interactions (Bender & Wagner 1996; Kaffashi et al. 1997; O’Brien
& Mackay 2000).

Barnes (1989) proposes that shear thickening – albeit perhaps not to a degree
measurable mechanically – will occur in all suspensions. The present analysis demon-
strates that this conclusion will probably hold provided particles are not hindered from
approaching close to physical contact where hydrodynamic lubrication interactions
come into play. In this study, shear thickening was removed by keeping particle pairs
apart, accomplished through an infinite repulsive force, which is, as such, rather un-
realistic. We may expect that repulsive interparticle interactions cannot withstand the
compressive hydrodynamic forces at large Pe and thus cannot prevent a boundary-
layer from forming near particle contact. Nevertheless, the results of the study of
the excluded volume interaction point to the importance of the competition between
interparticle and hydrodynamic interactions at large Pe. Such a competition is the
argument used by Boersma, Laven & Stein (1990) in suggesting a simple criterion for
locating the shear-thickening regime in non-hard-sphere suspensions, although the
method by which the result is obtained has been criticized (Marrucci & Denn 1985).
Computer simulations have been used to demonstrate clearly that the form of the
interparticle potential affects the degree of shear thickening (Catherall, Melrose &
Ball 2000).
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black symbols, surface spherical harmonic expansion; open symbols, finite-difference solution; tinted
symbols, finite-difference solution of the boundary-layer equation; dashed lines, extrapolation of
large Peb results.

Shear thickening is a well-documented effect in strongly sheared colloidal suspen-
sions. The lubrication interactions that cause shear thickening also bring about a
second important effect in strong flows: the sign reversal of the first normal stress
difference on going from small to large Pe. Figure 19 summarizes the O(φ2

b) results
for N1 and N1−N2 as functions of Peb and b/a. The dominant transport mechanism
at small Peb (and not too large b/a) is Brownian motion, which dictates that N1 > 0.
On increasing Peb hydrodynamic interactions gradually overcome Brownian motion,
aside from the balance that exists in the boundary-layer, which leads to N1 < 0.
Increasing b/a simply moves the boundary-layer away from particle-particle contact,
which has two connected effects. As shown in figures 9 and 10, the boundary-layer
structure changes such that the boundary-layer asymmetry decreases with increasing
b/a. In addition, on increasing b/a the particles no longer experience lubrication
interactions, and for b/a → ∞ the influence of hydrodynamic interactions vanishes
entirely. The former effect dictates that the Pe → ∞ and b/a → ∞ limit of N1 is
small and positive, whereas the combination of the two prevents the sign reversal
from occurring at large b/a.

In figure 19 we have extrapolated the large Peb results to the Peb → ∞ limit.
This was done by assuming the following asymptotic form: N1 ≈ α + Pe−1

b β, where
the b/a-dependent coefficients α and β were obtained from a linear least-squares
analysis of PebN1 versus Peb plots. The b/a → ∞ results in figure 19 qualitatively
agree with those from Brownian dynamics simulations of concentrated hard sphere
suspensions (Foss & Brady 2000a). N1 is positive for all Pe and the maximum at
Pe ∼ O(1) is reproduced. Note, however, that for Pe beyond O(10) the concentrated
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suspensions form ordered structures in the flow when hydrodynamic interactions are
absent, which precludes making any comparisons with the large Pe results from the
present study. There are some data on concentrated suspensions of electrostatically
stabilized particles that support some of the normal stress findings reported here.
The polyvinyl chloride suspensions studied by Jomha & Reynolds (1993) exhibit the
initial N1 ∝ Pe2 behaviour and a sublinear Pe dependence at larger Pe, which would
appear as a maximum when the normalization in figure 19 is used. The situation is,
however, less clear for the other suspensions they examined.

In experimental measurements of normal stresses Zarraga, Hill & Leighton (2000)
recently determined that N1 is negative for concentrated suspensions of non-colloidal
spheres. Moreover, they found (N1−N2)/ηs > 0 and that it is roughly a linear function
of shear rate. The large Peb results in figure 19 are only in qualitative accord with
these experimental results if we assign a small excluded volume repulsion (b/a ∼ 1.1)
to the interactions among the glass spheres in the experiments. Note, however, that
such a repulsive range is large in absolute terms since the particles are several tens
of micrometres; we may thus have to look for an alternative explanation to the
one given here, such as the role of concentration, inertia or polydispersity. For this
range of repulsion the Brownian contribution to the normal stresses is negligible, and
they are determined essentially only by hydrodynamic and interparticle forces, as is
probably the case in the experiments. Figure 19 shows then that (N1−N2)/ηsγ̇φ

2
b > 0

and that it asymptotes to a finite positive value. It follows that (N1 −N2)/ηs will be
a nearly linear function of shear rate, as observed experimentally.

Non-Newtonian effects in dilute colloidal suspensions are difficult to detect mechan-
ically. Therefore, measurements are usually conducted on concentrated suspensions,
which are of course also of greater technical and industrial relevance. Simple scal-
ing analyses in past works have yielded approximate but useful correlations for the
rheological and diffusional properties of colloidal suspensions. For example, it was
recently shown that the shear thinning Brownian part of the viscosity from Stokesian
dynamics simulations of concentrated hard sphere suspensions could be reduced to
a concentration independent correlation using the long-time self-diffusivity (Foss &
Brady 2000b). A similar treatment can be used to extend the dilute Brownian viscosity
calculated here to high concentrations.

Shear thickening is expected to be particularly well-captured by a scaling analysis
since pair interactions should dominate even in a concentrated suspension. The
squeezing together of the pair is resisted only by the pure solvent, leaving the
lubrication interaction essentially unaltered from that between the isolated pairs in
this study. Supported by a previous scaling analysis of Stokesian dynamics simulations
results (Foss & Brady 2000b), we expect that the influence of a third or more
particles on this strong pair interaction should be captured by a mean-field treatment,
e.g. through a renormalization of the the surrounding solvent viscosity to the high-
frequency dynamic viscosity η′∞ at the concentration of interest. The scaling analysis
of the present results will be presented elsewhere.

We can now claim that the origin of continuous shear thickening is fully understood;
it arises because of boundary-layer formation at small interparticle separations. It
is thus reasonable to expect the degree of shear thickening to be decreased in
concentrated suspensions by maintaining particles well separated, which provides
a rationale for designing suitable surface modifications. A second important effect
caused by the boundary-layer is a sign reversal in the first normal stress difference,
which assumes negative values in strong shear flows because the lubrication forces
act to preserve the boundary-layer in the extensional zone. The present results for
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dilute, model colloidal suspensions in both weak and strong shear flows, which show
that they behave qualitatively the same as concentrated suspensions, provide a firm
basis for analysing the role of colloidal forces on the rheological behaviour.

This work was supported in part by a grant from IFPRI.

Appendix A. The non-equilibrium osmotic pressure
In this Appendix we re-examine the determination of the osmotic pressure. The

expressions for the stresses can be cast in different, equivalent forms; the specific choice
made is based generally on convenience. Here we choose the original formulation due
to Batchelor (1977). The two-body expressions for the thermodynamic stresses are

〈SP 〉
nkT

= −1

2

∫
drg(r)(rF + 2C · F ), (A 1)

〈SB〉
nkT

= −
∫
r=2a

dAg(2an)(ann+ C · n)−
∫

drg(r)∇ · C +

∫
r→∞

dAC · n, (A 2)

where dA = r2dΩ and C = (RSU · R−1
FU)2 + (RSU · R−1

FU)1 is not traceless in its first two
Cartesian indices; instead,

C = C̃ + 1
3
I (I :C) = C̃ + IA, (A 3)

where Aα = 1
3
δβγCβγα and C̃βγα is the traceless part of Cβγα.

Since C̃ · n→ −a(nn− 1
3
I ) and A→ − 1

3
an as r → 2a, the first term in the Brownian

stress vanishes, leaving

〈SB〉
nkT

= −1

2

∫
drg(r)W (r)

(
r̂r̂ − 1

3
I
)− I ∫ drg(r)∇ · A+

∫
r→∞

dAC · n, (A 4)

where ∇ · C̃ = 1
2
W (r)

(
r̂r̂ − 1

3
I
)
. The term containing the hydrodynamic function

A = − 2
9
aA(r)r̂, with A(r) decaying as 3

2

(
a
r

)2
in the far field (Jeffrey et al. 1993), is

not absolutely convergent. This is resolved by writing g(r)∇·A = ∇·(Ag(r))−A ·∇g(r),
which results in

−I
∫

dr∇ · (Ag(r)) + I

∫
drA · ∇g(r) + I

∫
r→∞

dAA · n, (A 5)

where we have eliminated the traceless part of C in the last term by completing the
angular integrations. The divergence theorem eliminates further the surface integrals
in the far field, and the remaining terms provide us with a convergent expression for
the Brownian stress

〈SB〉
nkT

= −1

2

∫
drg(r)W (r)

(
r̂r̂ − 1

3
I
)

+ I

∫
r=2a

dAA · ng(2an) + I

∫
drA · ∇g(r).

(A 6)

Since we treat systems with a hard core repulsion at r = 2b > 2a, the surface integral
in the above vanishes owing to g(r) being zero for r < 2b, which is the reason it does
not appear in (3.7) quoted earlier.

For a hard-sphere suspension at equilibrium only the middle term in (A 6) survives.
Hence, the Brownian stress alone determines the osmotic pressure (Brady 1993). For
the excluded volume interaction in (2.5), however, it is the interparticle stress that
determines the osmotic pressure through the force F = kTδ(r − 2b)r̂.
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Out of equilibrium, it is convenient to combine the parts of the interparticle and
Brownian stresses that involve the trace of C by using the identity

g(r)A ·
(
∇ ln g(r) +

1

kT
∇V (r)

)
= e−V (r)/kTA · ∇

(
g(r)

e−V (r)/kT

)
, (A 7)

which leads to the last term in the Brownian stress in (3.7). Note that this term is
finite for hard spheres, for which V (r) = 0, and should accordingly be interpreted as
a stress contribution from Brownian motion.

Appendix B. Boundary-layer equation
Combining (2.6) with the two-body expressions for the diffusivity tensor and the

relative particle velocity, the two-body Smoluchowski equation assumes the following
form

1

r2

∂

∂r

(
r2G

∂g

∂r

)
+

H

r2 sin θ

(
∂

∂θ

(
sin θ

∂g

∂θ

)
+

1

sin θ

∂2g

∂ϕ2

)
=
Peb

2

(
gWγr + r(1− A)γr

∂g

∂r
+ (γθ − Beθ)∂g

∂θ
+

(γϕ − Beϕ)

sin θ

∂g

∂ϕ

)
, (B 1)

where γr , γθ , and γϕ are components of the velocity vector 〈Γ̂〉 · r̂ in the spherical

coordinate system depicted in figure 2. Also, eθ = r̂ · 〈Ê 〉 · θ̂ and eϕ = r̂ · 〈Ê 〉 · ϕ̂. For

the simple shear flow with 〈Γ̂〉 = ẑx̂ under consideration here, they are given by

γr = sin θ cos θ cosϕ, γθ = − sin2 θ cosϕ, γϕ = 0, (B 2)

eθ = 1
2
(γθ + cos2 θ cosϕ), eϕ = − 1

2
cos θ cosϕ. (B 3)

To focus on the behaviour of the boundary layer, we stretch the radial coordinate by
defining y = Peb(r − 2). Dividing both sides of (B 1) by Pe2

b, we obtain the following
equation

G
∂2g

∂y2
+ Q

∂g

∂y
+
HPe−2

b

4 sin θ

(
∂

∂θ

(
sin θ

∂g

∂θ

)
+

1

sin θ

∂2g

∂ϕ2

)
+ O(Pe−3

b )

=
Pe−1

b

2

(
gWγr + (γθ − Beθ)∂g

∂θ
+

(γϕ − Beϕ)

sin θ

∂g

∂ϕ

)
, (B 4)

where we have neglected terms of order Pe−3
b and higher. The lowest-order term

neglected is proportional to y2Pe−3
b , indicating that (B 4) is not uniformly valid for

strong flows, but is valid only near particle contact (y ∼ 0) where the boundary layer
indeed exists in the compressional quadrant. The function Q in (B 4) is given by

Q =
dG

dy
+ GPe−1

b

(
1− 1

2
yPe−1

b

)− γr(1− A)
(
1 + 1

2
yPe−1

b

)
. (B 5)

The boundary conditions to be satisfied by (B 4) are given by

γr(1− A)g − G∂g
∂y

= 0, y = 0, g → 1, y →∞, (B 6)

By neglecting also the O(Pe−2
b ) terms, (B 4) reduces to the equation analysed by Brady

& Morris (1997).
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